ЗАДАНИЯ

теоретического тура регионального этапа

XL Всероссийской олимпиады школьников по биологии. 2023-24 уч. год.

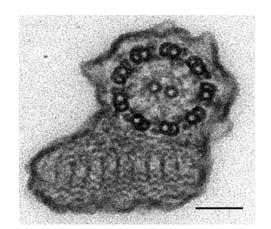
10 класс ВАРИАНТ 1

Дорогие ребята!

Поздравляем вас с участием в региональном этапе Всероссийской олимпиады школьников по биологии! Отвечая на вопросы и выполняя задания, не спешите, так как ответы не всегда очевидны и требуют применения не только биологических знаний, но и общей эрудиции, логики и творческого подхода. Успеха Вам в работе!

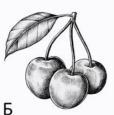
Часть 1. Вам предлагаются тестовые задания, требующие выбора <u>только одного ответа</u> из четырех возможных. Максимальное количество баллов, которое можно набрать -30 (по 1 баллу за каждое тестовое задание). Индекс ответа, который вы считаете наиболее полным и правильным, укажите в матрице ответов.

1. Обработка бактериальной клетки лизоцимом может приводить к:


- а) удалению пептидогликанового слоя;
- б) разрушению жгутиков;
- в) изменению белкового состава жгутиков;
- г) переходу рибосом от 70S в 80S.

2. У возбудителей какой болезни можно встретить структуру, изображенную на микрофотографии?

- а) бруцеллёз;
- б) микоплазмоз;
- в) токсоплазмоз;
- г) лейшманиоз.


3. Гаметофит папоротников развивается из:

- а) яйцеклетки;
- б) споры;
- в) участка корневища;
- г) зиготы.

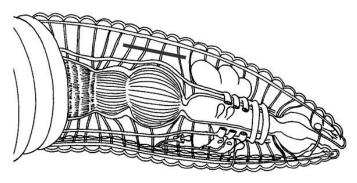
- 4. Выберите событие в эволюции растений, без которого невозможно представить появление семенных растений:
 - а) потеря подвижности мужских гамет;
 - б) переход от травянистых к древесным жизненным формам;
 - в) возникновение цветка;
 - г) возникновение разноспоровости.
- 5. Известно, что у многих растений бывают сочные плоды, но нередко эндозоохорное распространение обеспечивает сочная семенная кожура. Отыщите пример такого растения на рисунке:
 - a) A;
 - б) Б;
 - в) B;
 - г) Г.

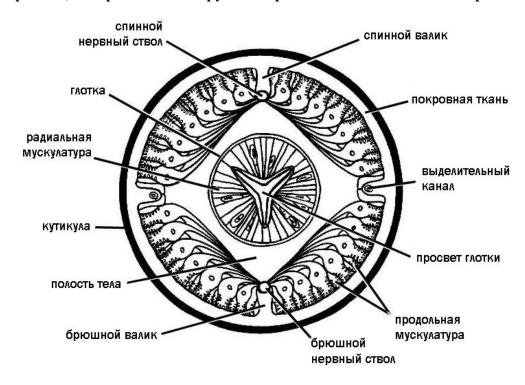
- 6. Строительная компания вызвала эксперта, чтобы оценить возраст деревьев, из которых был произведен стройматериал (бревна). Эксперт выбрал из партии для исследования одно бревно типичного размера и подсчитал количество годичных колец на двух противоположных торцах бревна. На одном конце было начитано 60 годичных колец, а на другом 30 колец. Их полученных данных следует, что приблизительный возраст данного дерева:
 - а) 30 лет;
 - б) 45 лет;
 - в) 60 лет;
 - г) 90 лет.
- 7. Борис провел исследование. В качестве объектов исследования он использовал листья кувшинки (Nymphaéa), кукурузы (Zea), яблони (Mālus), фасоли (Phaséolus). Борис пронумеровал каждый объект, а затем при помощи бесцветного лака сделал слепки с эпидермиса листьев каждого растения. Он нанес лак на нижнюю, а затем на верхнюю сторону листа каждого объекта. После высыхания лака, аккуратно пинцетом снял отпечаток, поместил в каплю воды на предметное стекло и рассмотрел под микроскопом. С помощью окуляр-микрометра подсчитал число устьиц в 1 мм². После выполнения подсчетов числа устьиц на листьях четырех разных растений у него получились следующие величины:

№ объекта	Число устьиц на 1 мм ² абаксиальной стороны листа	Число устьиц на 1 мм ² адаксиальной стороны листа				
1	3	625				
2	246	0				
3	68	52				
4	281	40				

Объект № 3 соответствует листу

- а) кукурузы;
- б) фасоли;
- в) яблони;
- г) кувшинки.
- 8. На часть листа клена Петр прикрепил кружок, вырезанный из черной бумаги. Через 2 недели Петр сорвал этот лист, убрал кружок, поместил в кипящий этиловый спирт и потом в раствор йодида калия. Как стал выглядеть лист?
 - а) в части листа синий круг, остальной лист бесцветный;
 - б) в части листа бесцветный круг, остальной лист синий;
 - в) в части листа зеленый круг, остальной лист синий;
 - г) в части листа бесцветный круг, остальной лист зеленый


9. Пасынкование томатов — агротехнический прием, заключающийся в удалении боковых побегов у растения. У индотерминантных сортов (у них главный побег способен к неограниченному росту) пасынкование рекомендуют проводить после формирования генеративного побега, находящегося над боковым побегом, который надо удалить. Почему садоводы дожидаются формирования генеративного побега?


- а) Органические вещества, синтезируемые листом, в пазухе которого находился удаленный побег, перераспределяются непосредственно к цветкам и завязям, расположенным над ним. Это приведет к формированию более крупных и сладких плодов.
- б) Если провести обрезку в более ранний период, повышение концентрации ауксина в узлах, находящихся выше, может вызвать усиленное ветвление побега.
- в) Обрезка вызывает повышение концентрации гиббереллинов, что может помешать в дальнейшем формированию цветков, поэтому ее надо проводить после формирования генеративного побега.
- г) Обрезка повышает концентрацию этилена, который подавляет образование завязей плодов, поэтому на момент обрезки завязи уже должны быть.

10. При питании кровососущий комар поглощает большую порцию жидкости за короткое время. Избыток жидкости выводится:

- а) через систему трахей и дыхальца;
- б) через слюнные железы;
- в) через покровы, что способствует охлаждению тела в полёте;
- г) через мальпигиевы сосуды.
- 11. Отличительным признаком вторичной полости тела является наличие собственной стенки, которая представлена целомическим эпителием. Сколько раз отрезок, проведённый на схеме, пересекает целомический эпителий? Выберите один ответ:
 - а) четыре раза;
 - б) восемь раз;
 - в) пять раз;
 - г) ни одного раза.

12. У большинства животных отростки нервных клеток образуют контакты с мышечными клетками. Особенность иннервации соматической мускулатуры круглых червей заключается в том, что именно мышечные клетки образуют отростки, которые контактируют с нервными стволами. Рассмотрите схему.

Передвижение круглых червей обеспечивается:

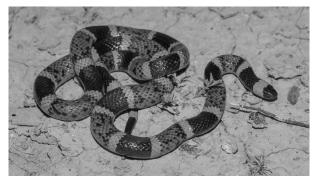
- а) поочерёдным сокращением радиальной и продольной мускулатуры;
- б) перекачиванием полостной жидкости попеременно в переднюю и заднюю часть тела;
- в) изгибанием тела попеременно в левую и правую сторону;
- г) изгибанием тела в спинно-брюшном направлении.

13. Какие виды млекопитающих фауны России тесно связаны с водной средой обитания:

- а) русская выхухоль, полёвка-экономка, рыжая полёвка, ласка;
- б) обыкновенная кутора, калан, водяная полёвка, европейская норка;
- в) европейская выдра, желтогорлая мышь, обыкновенная бурозубка, ондатра;
- г) малая белозубка, бобр европейский, соня-полчок, американская норка.

14. Какие из перечисленных групп костей обеспечивают расширение ротоглоточной полости при всасывательных движениях у костистых рыб во время питания или лыхания:

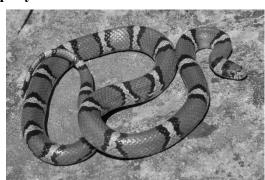
- а) подвесок, нёбная, квадратная, кости жаберной крышки;
- б) верхнечелюстная, сочленовная, предчелюстная, кости жаберной крышки;
- в) квадратная, переднеушная, подвесок, кости жаберной крышки;
- г) предчелюстная, верхнечелюстная, зубная, кости жаберной крышки.


15. Усиленное давление со стороны хищников приводит к возникновению у рептилий анатомических или поведенческих особенностей, повышающих шансы животного на выживание. Среди перечисленных видов:

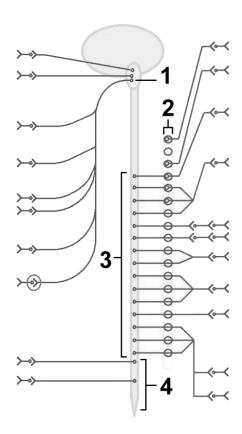
- 1. прыткая ящерица;
- 2. серый варан;
- 3. степная агама;
- 4. ломкая веретеница;

- 5. зелёная игуана;
- 6. серый геккон;
- 7. длинноногий сцинк;
- 8. ушастая круглоголовка;
- 9. обыкновенный хамелеон;
- 10. желтопузик –

способностью к автотомии (отбрасыванию хвоста и последующей его регенерации) обладают:

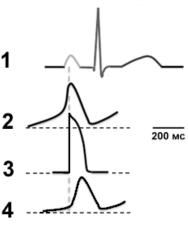

- a) 2, 4, 7, 9;
- б) 1, 3, 8, 10;
- в) 2, 5, 6, 8;
- г) 1, 4, 6, 7.
- 16. Живущие в Центральной и Южной Америке ядовитые коралловые аспиды (род *Micrurus*) и неядовитые королевские змеи (род *Lampropeltis*) имеют яркую поперечно-полосатую окраску сходного рисунка.

Коралловый аспид


Это является проявлением:

- а) бейтсовской мимикрии;
- б) мюллеровской мимикрии;
- в) конвергентного сходства;
- г) эволюционного родства.

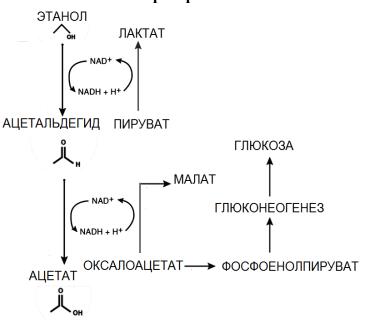
Калифорнийская королевская змея


- 17. Тела нейронов, возбуждение которых приводит к сужению бронхов, обозначены на схеме цифрой:
 - a) 1;
 - б) 2;
 - в) 3;
 - г) 4.
- 18. При лечении зубов в раствор для обезболивания добавляют немного адреналина. Это делается, так как:
 - а) адреналин сужает сосуды вокруг места укола и не позволяет раствору растекаться и таким образом увеличивает время обезболивания;
 - б) опиатный рецептор, на который действует анальгетик, имеет центр связывания с адреналином, что увеличивает время активности системы обезболивания;
 - в) адреналин повышает возбудимость адренергических «антиболевых» центров продолговатого мозга.
 - г) адреналин структурно похож на молекулу анальгетика, но менее токсичен, поэтому продолжительность наркоза не меняется, а последствия его меньше.

19. На рисунке приведены электрограммы, отражающие активность разных участков сердца. Какой из вариантов электрограммы соответствует возбуждению клеток атриовентрикулярного узла?

- б) 2;
- в) 3;
- г) 4.

- 20. Повторяя эксперименты Менделя, исследователь получил и проанализировал поколение F₁, опылив растение гороха из сорта с жёлтыми горошинами и бобами пыльцой с растения гороха из сорта с зелёными горошинами и бобами. Доминируют жёлтый цвет горошин и зелёный цвет бобов. Какими будут фенотипы у горошин в F1?
 - а) бобы будут жёлтыми, горошины тоже жёлтыми;
 - б) бобы будут жёлтыми, горошины зелёными;
 - в) бобы будут зелёными, а горошины жёлтыми;
 - г) бобы будут зелёными, горошины тоже зелёными.


- 21. Для синтеза пигмента из неокрашенного предшественника необходима последовательная работа двух ферментов, кодируемых двумя несцепленными генами. В потомстве двух непигментированных животных оказалось несколько пигментированных детенышей. В зависимости от генотипов родителей, среди теоретически ожидаемых соотношений потомков в этом случае не наблюдается соотношение:
 - а) 1 пигментированный к 1 непигментированному;
 - б) 3 пигментированных к 1 непигментированному;
 - в) 1 пигментированный к 3 непигментированным;
 - г) все потомство пигментированное.

22. Сера не входит в состав:

- а) мембран хлоропластов;
- б) белков цитоскелета;
- в) ДНК митохондрий;
- г) полисахаридов межклеточного матрикса.
- 23. Женщина в возрасте 43 года поступила в 22:00 в отделение неотложной помощи со слабостью и головокружением. При сборе анамнеза выяснилось, что пациентка в этот день рано проснулась и отправилась на работу, не позавтракав, а в обед успела только выпить чашку кофе. Около 7 вечера она отправилась на вечеринку с подругами, где выпила бокал вина и ничего не ела. Лабораторные анализы

показали, что концентрация глюкозы в крови на момент поступления в отделение равна 2 ммоль/л (при норме 3,5-5,7 ммоль/л). Выпив стакан апельсинового сока, пациентка сразу почувствовала себя лучше. Причина гипогликемии в описанном случае состоит в повышении:

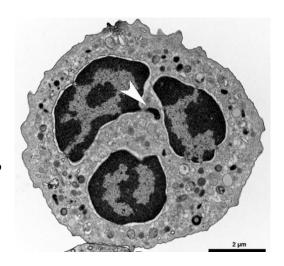
- а) интенсивности окисления жирных кислот:
- б) соотношения восстановленной и окисленной форм NAD;
- в) концентрации оксалоацетата и пирувата;
- г) интенсивности глюконеогенеза.

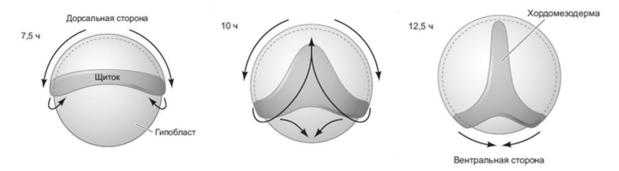
24. Углеводы (сахара) по химической природе представляют собой альдегидоспирты или кетоспирты. Свободные карбонильные группы (C=O) углеводов обладают редуцирующей (восстанавливающей) активностью, то есть способностью восстанавливать, например, двухвалентные катионы до одновалентных (Cu²+ до Cu+), на чем основаны некоторые качественные реакции на редуцирующие сахара. На рисунках показаны формулы четырех распространенных дисахаридов. Какой из них НЕ является редуцирующим сахаром?

III

I

- a) I;
- б) II;
- в) III;
- г) IV.
- 25. Современные методы оптогенетики позволяют встраивать в возбудимые ткани гены светочувствительных белков, придавая этим тканям способность реагировать на свет. На рисунке изображен типичный оптогенетический эксперимент: мыши в центр агрессии в гипоталамусе внедрили ген каналородопсина ионного канала, открывающегося в ответ на свет голубой части спектра. При этом ген попадал в нейроны, запускающие агрессивное поведение. После этого посредствам оптоволокна центр агрессии освещали голубым светом.




Как видно из рисунка, мышь атаковала помещенную ей в вольер перчатку. Как только свет выключали, мышь возвращалась к своей обычной повседневной активности. Можно предположить, что:

- а) Каналородопсин переносит ионы против градиента концентрации и заряда;
- б) Каналородопсин проницаем для ионов хлора;
- в) Каналородопсин проницаем для ионов натрия;
- г) При освещении центра агрессии светом красного спектра агрессивное поведение мыши будет подавляться.

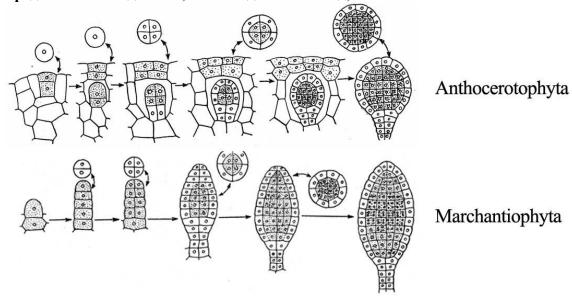
- 26. На рисунке приведено изображение клетки в препарате крови человека, полученное с помощью просвечивающего электронного микроскопа. Стрелкой указана перетяжка между сегментами ядра. Масштабный отрезок имеет длину 2 микрометра. Отметьте верное утверждение относительно этой клетки:
 - а) такие клетки обнаруживаются в крови только при патологии;
 - б) эта клетка способна вступить митоз после активации;
 - в) увеличение доли этих клеток в крови свидетельство аллергии или паразитарной инфекции;
 - г) эта клетка является гранулоцитом.

- 27. Число линейных тетрасахаридов, которое можно образовать с использованием 10 видов моносахаридов:
 - а) равно 10 000;
 - б) менее 10 000;
 - в) равно 16 000;
 - г) более 20 000.
- 28. В процессах репликации и поддержания длины ДНК человеческих хромосом не участвует фермент:
 - а) ДНК-зависимая РНК-полимераза;
 - б) ДНК-зависимая ДНК-полимераза;
 - в) РНК-зависимая РНК-полимераза;
 - г) РНК-зависимая ДНК-полимераза.
- 29. Кодирующая часть гена занимает три экзона, причем второй из них является альтернативным (при сплайсинге может вырезаться вместе с окружающими интронами) и его длина кратна трем нуклеотидам. Сколько разных изоформ белка может быть получено при экспрессии этого гена?
 - а) одна;
 - б) две;
 - в) три;
 - г) четыре.
- 30. Выделяют несколько основных типов гаструляционных движений: эпиболия (обрастание), инвагинация (впячивание), инволюция (подворачивание), ингрессия (выселение), деламинация (расслоение), интеркаляция (встраивание), конвергенция (растяжение). На рисунке представлены последовательные стадии формирования мезентодермы у зародыша костной рыбы Danio rerio излюбленного лабораторного объекта. Выберите ту комбинацию клеточных движений, которая соответствует последовательно (слева направо) изображенным процессам:

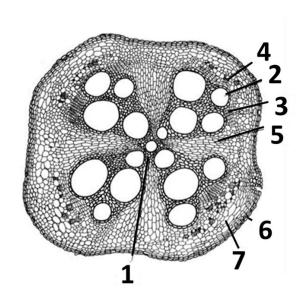
- а) эпиболия, инвагинация, деламинация;
- б) эпиболия, деламинация, ингрессия;
- в) эпиболия, инвагинация, конвергенция;
- г) эпиболия, инволюция, конвергенция.

Часть 2. Вам предлагаются тестовые <u>задания с множественными вариантами ответа</u> (от 0 до 5). Максимальное количество баллов, которое можно набрать — **60** (по 3 балла за каждое тестовое задание). Индексы верных ответов (В) и неверных ответов (Н) отметьте в матрице знаком «Х». Образец заполнения матрицы:

Nº	?	A	Б	В	Γ	Д
	В		X	X		X
	Н	X			X	


1. Принадлежность бактерий к роду клостридии (Clostridium) определяется:

- а) облигатно анаэробным характером энергетического метаболизма;
- б) строением клеточной стенки;
- в) расположением нуклеоида;
- г) способностью образовывать эндоспоры;
- д) наличием рибосом 70S.


2. Выберите общее в строении и жизненных циклах гриба Мукора (*Mucor*) и грибоподобного протиста Фитофторы (*Phytophthora infestans*):

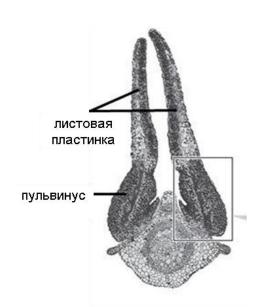
- а) оогамный половой процесс;
- б) гаплобионтный жизненный цикл;
- в) диплобионтный жизненный цикл;
- г) мицелий многоядерный без перегородок;
- д) вегетативное размножение фрагментами мицелия.

3. На рисунке изображен процесс закладки и развития антеридиев у мохообразных: Антоцеротовых (Anthocerotophyta) и Печёночников (Marchantiophyta). Сравнив представленные данные, можно сделать вывод, что:

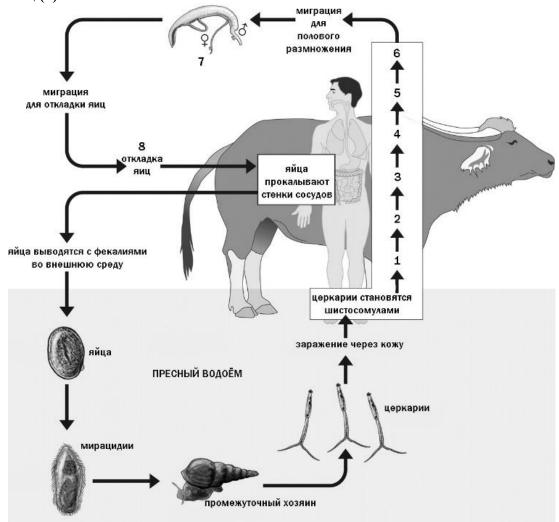
- а) антеридии в обоих таксонах имеют многослойную наружную стенку;
- б) ножка антеридия в обоих таксонах состоит из четырех вертикальных рядов клеток;
- в) антеридии Антоцеротовых в отличие от Печёночников развиваются эндогенно;
- г) антеридии Печёночников в отличие от Антоцеротовых сидячие (не имеют ножку);
- д) у Антоцеротовых мейоз происходит на более ранней стадии развития, чем у Печёночников.
- 4. На внеурочных занятиях по анатомии растений выдали объект орган растения, поперечный срез которого она окрасила флороглюцином в присутствии концентрированной соляной кислоты и рассмотрела полученный микропрепарат под микроскопом. При описании среза в листе ответа она допустила ряд ошибок. Укажите их:
- а) объектом исследования является корень с вторичным утолщением;
- б) протоксилема и метаксилема, которые хорошо заметны в центральной части, образованы камбием;
- в) камбий перициклического происхождения образует лубо-древесные лучи;
- г) это поперечный срез корня однодольного растения;
- д) цифрой 6 обозначена ризодерма корня.

Объект исследования

- 5. Климактерический тип созревания плодов предполагает дозревание плода после опадения или снятия с растения. Какими признаками будут обладать созревающие томаты, если они относятся к климактерическим плодам?
 - а) наличие палисадного мезофилла в мезокарпе;
 - б) усиленный синтез целлюлозы при созревании;
 - в) экспрессия генов синтеза крахмала в созревающем плоде;
 - г) активация амилаз после опадения плода;
 - д) эти плоды получают продукты фотосинтеза только от вегетативных фотосинтезирующих органов.
- 6. Механическое раздражение мимозы стыдливой вызывает быстрое (в течение 4-10 секунд) опускание листа. Это определяется изменениями размера клеток в пульвинусе, органе, расположенном у основания листа (см. рис).

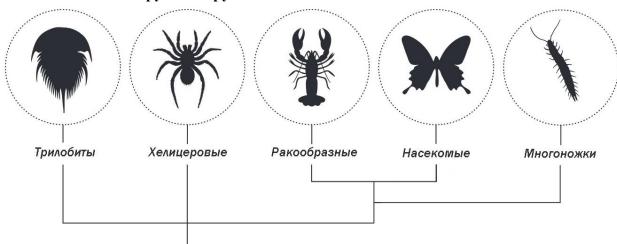


лист мимозы перед стимуляцией


лист мимозы после стимуляции

Быстрые изменения размеров клеток пульвинуса вызываются:

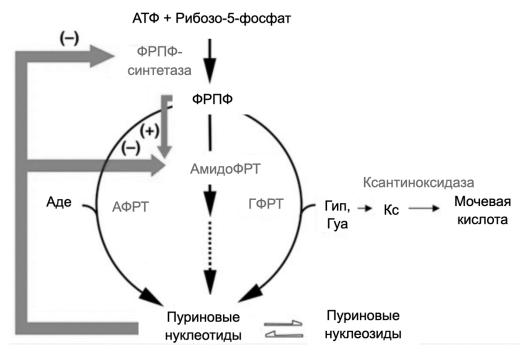
- а) изменениями структуры клеточной стенки клеток пульвинуса;
- б) открытием и/или закрытием калиевых каналов в плазмалемме клеток пульвинуса;
- в) тургорного давления в клетках пульвинуса;
- г) увеличением или уменьшением синтеза сахарозы в клетках пульвинуса;
- д) увеличением или уменьшением активности транскрипции и трансляции в клетках пульвинуса.


7. Шистосомозы — это группа паразитарных заболеваний, вызываемых дигенетическими сосальщиками из рода Шистосома (Schistosoma). Шистосомозы распространены в тропических регионах и наносят существенный вред здоровью человека; хроническая инвазия может в некоторых случаях привести к смерти. Понимание жизненного цикла шистосом и их взаимоотношений с хозяевами помогает разрабатывать меры профилактики и лечения. Рассмотрите схему жизненного цикла Шистосомы японской. В организме окончательного хозяина паразиты совершают сложную миграцию (1-8). Половозрелые черви мигрируют в сосуды воротной системы печени (7), а затем в брыжеечные вены для откладки яиц (8).

Выберите характерные клинические проявления заболевания, вызванного заражением шистосомой японской:

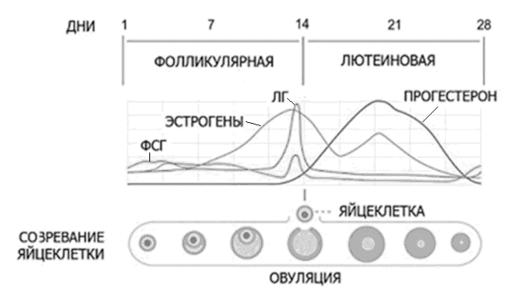
- а) гепатомегалия (патологическое разрастание ткани печени);
- б) эозинофилия (увеличение числа эозинофилов в крови);
- в) дерматит (зуд и сыпь на коже «крапивница»);
- г) гематурия (наличие крови в моче);
- д) кишечные кровотечения.

8. На рисунке приведена максимально упрощенная схема эволюционных взаимоотношений крупных групп членистоногих.



Выберите признаки, которые, в соответствии с данной схемой, возникали в эволюции членистоногих несколько раз независимо:

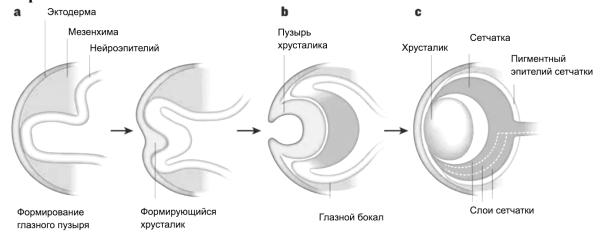
- а) одноветвистые конечности;
- б) ротовой аппарат, включающий челюсти (мандибулы и максиллы);
- в) кровеносная система незамкнутого типа;
- г) трахейное дыхание;
- д) мальпигиевы сосуды.
- 9. Изучение образа жизни перечисленных ниже видов рыб показало, что все они иногда выходят из водной среды обитания. При этом специфические органы для дыхания атмосферным воздухом имеют:
 - а) летучая рыба;
 - б) илистый прыгун;
 - в) речной угорь;
 - г) протоптерус;
 - д) анабас-ползун.
- 10. Развитие с неполным превращением характерно для:
 - а) тараканов;
 - б) жесткокрылых;
 - в) чешуекрылых;
 - г) стрекоз;
 - д) прямокрылых.
- 11. У высококвалифицированных спортсменов-ныряльщиков длительность задержки дыхания при погружении в воду может достигать 10 и более минут. При этом спортсмены сохраняют контроль за моторными реакциями и не теряют сознание. За счет каких физиологических реакций возможна такая длительная задержка дыхания?
 - а) расширение периферических сосудов;
 - б) замедление частоты сердечных сокращений;
 - в) повышение артериального давления;
 - г) сокращение селезенки;
 - д) увеличение сердечного выброса.


- 12. К реакциям матричного синтеза относятся:
 - а) синтез ДНК;
 - б) синтез белка;
 - в) синтез РНК;
 - г) синтез жирных кислот;
 - д) синтез гликогена.
- 13. Выберите все комбинации «родитель-потомок-часть генома», в которых возможна передача наследственной информации:
 - а) мать дочь X-хромосома;
 - б) отец дочь X-хромосома;
 - в) мать сын митохондриальная ДНК;
 - г) отец дочь митохондриальная ДНК;
 - д) отец сын Ү-хромосома.
- 14. Выберите все скрещивания, где при условии полного доминирования по каждому гену расщепления по фенотипу составляют 3 к 1:
 - a) AaBb x aabb;
 - б) АаВь х АаВВ;
 - B) $X^aX^a \times X^AY$;
 - Γ) $X^A X^a \times X^A Y$;
 - \mathbf{J}) $\mathbf{X}^{A}\mathbf{X}^{a}$ х $\mathbf{X}^{a}\mathbf{Y}$.
- 15. Ацетилхолин синтезируется в цитозоле клетки и после этого загружается в синаптические везикулы, в которых его концентрация превышает цитозольную в сотни раз. Можно выделить синаптические везикулы из нейрона и поместить в раствор, содержащий ацетилхолин, при этом они сохранят способность поглощать ацетилхолин из среды. Но эта способность будет проявляться только в том случае, если в среде содержится АТФ. Также, скорость поглощения будет возрастать, если повысить рН среды. Если добавить в раствор с синаптичес кими везикулами токсины, делающие их мембрану проницаемой для протонов, поглощение ацетилхолина полностью прекратится. Какие выводы Вы можете сделать на основании этих экспериментов?
 - а) ацетилхолин поглощается синаптическими везикулами путем вторично активного транспорта в обмен на протон;
 - б) существует специфическая АТФаза, переносящая ацетилхолин в синаптическую везикулу;
 - в) для поглощения ацетилхолина в мембране синаптической везикулы должна находиться Н+-АТФаза (протонная помпа);
 - г) АТФ может свободно проходить через мембрану синаптической везикулы;
 - д) в мембране синаптической везикулы присутствуют каналы, свободно пропускающие протоны.
- 16. Фаллоидин токсин, содержащийся в бледной поганке. Фаллоидин связывается с белком актином, когда тот находится в составе микрофиламентов (так называемый, F-актин). Этот токсин можно модифицировать, пришив к нему флуоресцентную метку. Если фибробласты человека обработать таким флуоресцентно-меченным фаллоидином, то выраженный флуоресцентный сигнал будет обнаруживаться:
 - а) на периферии клетки под плазматической мембраной;
 - б) в митохондриях;
 - в) в ядре;
 - г) в филоподиях;
 - д) в эндоплазматическом ретикулуме.

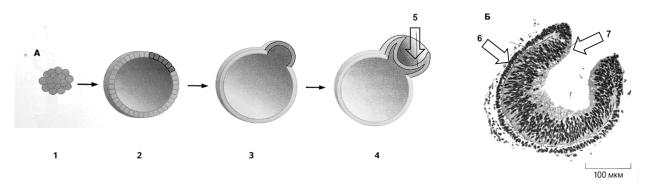
17. Подагра — заболевание, связанное с высоким содержанием определенного вещества в организме. В результате образуются нерастворимые кристаллы, что приводит к артриту, возникновению твердых новообразований на поверхностях суставов, камней в почках. Одной из причин заболевания могут стать мутации в X-сцепленном гене фермента фосфорибозилпирофосфатсинтетазы (ФРПРсинтетазы). Рассмотрите рисунок и ответьте, что из перечисленного может способствовать развитию подагры.

Упрощенная схема путей синтеза пуриновых нуклеотидов. ФРПФ-синтетаза — фосфорибозилпирофосфатсинтетаза, ФРПФ — фосфорибозилпирофосфат, АФРТ — аденинфосфорибозилтрансфераза, АмидоФРТ — амидофосфорибозилтрансфераза, ГФРТ — гипоксантин-гуанин фосфорибозилтрансфераза, Аде — аденин, Гип — гипоксантин, Гуа — гуанин, Кс — ксантин.

- а) увеличение V_{max} образования фосфорибозилпирофосфата (ФРПР);
- б) уменьшение К_т для реакции ФРПФ-синтетазы;
- в) уменьшение сродства ФРПФ-синтазы к пуриновым нуклеотидам;
- г) нарушение секреции мочевой кислоты;
- д) увеличение K_m для реакции ксантиноксидазы.
- 18. На рисунке изображен график, отражающий изменение уровня гормонов в крови во время менструального цикла человека, и процессы, протекающие в яичнике. Пациентке были назначены гормональные препараты, оказывающие влияние на изображенные процессы. Выберите утверждения, которые являются верными:



- а) прием препаратов, содержащих синтетические аналоги эстрогена, способствует прекращению овуляции;
- б) прием препаратов, содержащих синтетические аналоги прогестерона, способствует остановке созревания фолликулов;
- в) прием препаратов, содержащих синтетические аналоги эстрогена и прогестерона, приводит к снижению выработки лютеинизирующего гормона (ЛГ) гипофизом;
- г) прием препаратов, содержащих синтетические аналоги эстрогена и прогестерона, приводит к снижению выработки фолликулостимулирующего гормона (ФСГ) гипофизом;
- д) прием препаратов, содержащих синтетические аналоги эстрогена и прогестерона, приводит к снижению выработки гонадотропин-рилизинг-гормона гипоталамусом и препятствует формированию желтого тела.


19. Среди форменных элементов крови человека ядра отсутствуют у:

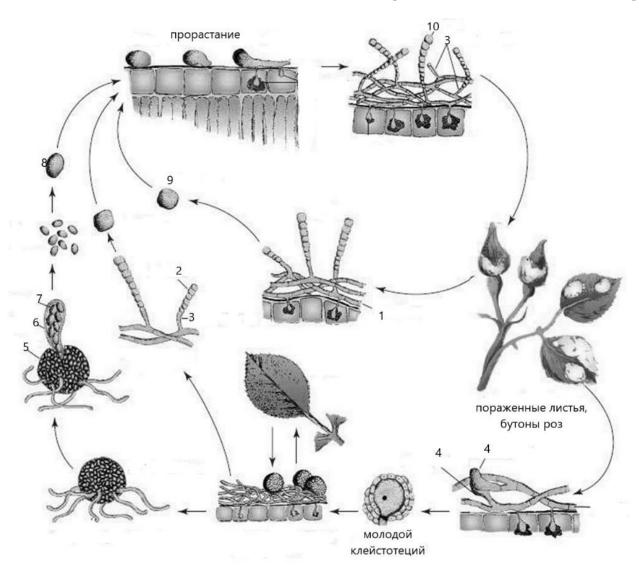
- а) эритроцитов;
- б) тромбоцитов;
- в) моноцитов;
- г) лимфоцитов;
- д) нейтрофилов.

20. Ниже на рисунке показана схема формирования глаза у млекопитающего в эмбриогенезе:

Рассмотрите ее и выберите верные утверждения, пользуясь иллюстрацией, на которой изображен процесс формирования структур глаза из культивируемых эмбриональных стволовых клеток:

Формирование структур глаза из эмбриональных стволовых клеток.

- а) клетки под цифрой 1 тотипотентные;
- б) цифрой 5 обозначен глазной бокал;
- в) клетки под цифрой 6 образуют меланин.
- г) клетки под цифрой 7 являются нейронами;
- д) формирование хрусталика происходит в результате эмбриональной индукции клеток эктодермы нейроэпителием;


- **Часть 3.** Вам предлагаются тестовые задания, требующие <u>установления соответствия</u>. Максимальное количество баллов, которое можно набрать **31,5**. Заполните матрицы ответов в соответствии с требованиями заданий. Во всех заданиях одной цифре соответствует только одна буква, но одна и та же буква может соответствовать нескольким цифрам или не использоваться вовсе.
- 1. [2.5 балла] Установите соответствие между организмом (1-5) и биотехнологически активным веществом (A-3), которое он синтезирует. Для каждого организма выберите только одно вещество:

Организм:	Вещество:
1. плесневый гриб Aspergillus niger;	А) красный стрептоцид
2. пропионовокислая бактерия Propionibacterium	Б) витамин В12
freudenreichii;	В) эндонуклеаза
3. актиномицет Streptomyces globisporus;	рестрикции ВатН1
4. цианобактерия Arthrospira platensis;	Г) хлорофилл
5. бацилла <i>Bacillus amyloliquefaciens</i> .	Д) стрептомицин
	Е) молочная кислота
	Ж) лимонная кислота
	3) бактериородопсин

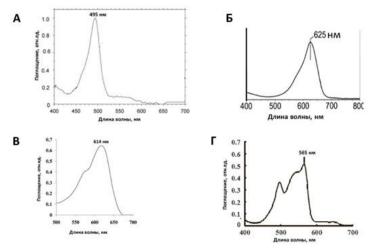
Вещество	1	2	3	4	5
Организм					

2. [5 баллов]. Рассмотрите рисунок жизненного цикла возбудителя мучнистой росы роз и установите соответствия между структурами, связанными с размножением, на рисунке (1-9), и названиями этих структур (А - Ж). Одна и та же стадия может несколько раз встречаться в жизненном цикле!

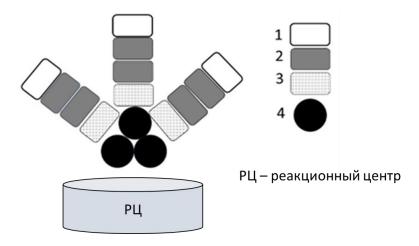
Названия структур: A - аскоспора; Б - конидия; B - конидиеносец; Γ - мицелий; \mathcal{L} - плодовое тело; \mathcal{E} - половой орган (антеридий, оогоний); \mathcal{K} – сумка.

Номера структур на рисунке	1	2	3	4	5	6	7	8	9	10
Название структур										

3. [3 балла] Татьяна Михайловна готовилась к занятиям со школьниками по анатомии растений. Она набрала различные объекты: корневище ландыша, корень лука, лист папоротника, стебель тыквы, лист кукурузы, стебель клевера. Укажите, поперечные срезы каких объектов необходимо изготовить, чтобы обнаружить указанные анатомические структуры (1-6). Соотнесите название объекта (A-E) с анатомической структурой, которая для него характерна.


	A.	корневище	ландыша	майского	1.	Биколлатеральный	открытый
	(Conv	vallaria majalis)	•		пров	одящий пучок;	
(Convaliaria majalis); Б. стебель тыквы обыкновенной (Cucúrbi.					2.	Амфикрибральный прово	дящий пучок;
	pépo)	•			3.	Радиальный проводящий	пучок;

B.	стебель	клевера	красного	(Trifolium
rub	ens);			


- Г. лист папоротника нефролеписа (Nephrolepis exaltata);
- Д. корень лука репчатого (Allium cepa);
- Е. лист кукурузы сахарной (Zéa máys).
- 4. Амфивазальный проводящий пучок;
- 5. Клетки обкладки вокруг коллатерального закрытого сосудисто-волокнистого пучка;
- 6. Коллатеральный открытый проводящий пучок.

Анатомическая структура	1	2	3	4	5	6
Название объекта						

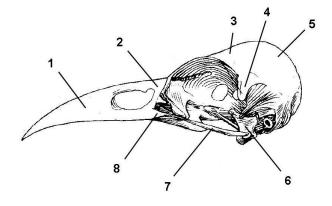
4. [2 балла] В лаборатории исследовали пигменты, выделенные из фикобилисом цианобактерии одного штамма. Каждый пигмент экстрагировали водой и получили спектры поглощения водных растворов пигментов. Однако надписи с пробирок стерлись, и теперь работники лаборатории пытаются установить соответствие между спектрами и белками фикобилисомы. Установите соответствие между спектрами и белками фикобилисомы (номера 1 – 4 на рисунке).

Спектры поглощения фикобилинов, полученные в лаборатории. Максимумы поглощения: А -495 нм, Б -625 нм, В -614 нм, $\Gamma-565$ нм.

Структура фикобилисомы. 1-4 - белки фикобилисомы, содержащие пигменты.

Номер белка	1	2	3	4
Спектр поглощения				

5. [2,5 балла] Пища является источником не только энергии, но и «строительного материала» для возобновления и роста клеток и тканей. Одним из важнейших биогенных элементов, поступающих животным с пищей, является азот. Соотнесите диапазоны содержания азота (1-5) с типами источников пищи наземных животных (А-Д):



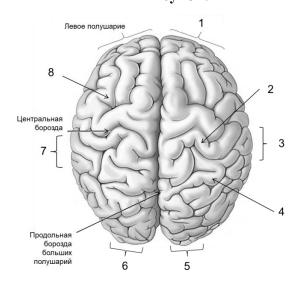
- А) ткани животных
- Б) листья растений
- В) флоэмный сок
- Г) ксилемный сок
- Д) семена растений

Содержание азота (диапазоны)	1	2	3	4	5
Источники пищи					

6. [4 балла] На рисунке представлен череп вороны без нижней челюсти. Установите соответствие между цифровыми обозначениями на рисунке (1-8) и костями черепа (A-K). Некоторые кости на рисунке не отмечены.

Череп вороны:

Кости черепа:

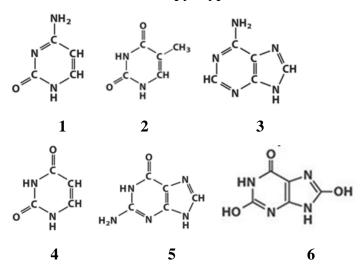

- А) нёбная;
- Б) квадратная;
- В) чешуйчатая;
- Г) сочленовная;
- Д) скуловая;
- Е) теменная;
- Ж) носовая;
- 3) предчелюстная;
- И) верхнечелюстная;
- К) лобная

Обозначения на рисунке	1	2	3	4	5	6	7	8
Кости черепа								

7. [4 балла] На рисунке изображена поверхность коры больших полушарий человека. Установите соответствие между цифрами на рисунке (1–8), обозначающими области коры, и основными функциями этих областей (А-3).

Цифры на рисунке	1	2	3	4	5	6	7	8
Функции								

Рисунок:



Функции:

- А) Принятие решений;
- Б) Ощущение прикосновения;
- В) Речь;
- Г) Пространственный зрительный анализ;
- Д) Восприятие левого поля зрения;
- Е) Восприятие правого поля зрения;
- Ж) Слух, правое ухо;
- 3) Слух, левое ухо.

8. [3 балла] Установите соответствие между структурными формулами азотистых оснований на рисунке (1–6) и их свойствами (А–Е).

Структуры

Свойства:

- А) Мол. масса 135, не содержит кислорода;
- Б) Мол масса 111, в ДНК часто метилируется;
- В) Мол. масса 151, у пауков служит для выведения азота;
- Г) Мол. масса 112, не содержится в ДНК;
- Д) Мол. масса 168, служит для выведения азота у насекомых;
- Е) Мол. масса 126, в основном находится в ДНК.

Структурная формула	1	2	3	4	5	6
Свойства						

9. [3 балла] Установите соответствие между структурами клетки печени (1-7) и теми молекулами, которые в них можно обнаружить (A-Г).

Структуры клетки: Молекула:

1) внутренняя мембрана митохондрий А) кардиолипин

2) ядро Б) протеогликаны

3) гликокаликс В) переносчики глюкозы семейства GLUT

4) матрикс митохондрий

5) плазматическая мембрана

6) шероховатый эндоплазматический ретикулум

Структура клетки	1	2	3	4	5	6
Вещество						

10. [2,5 балла] Соотнесите патологию (1-5) с типами клеток (А-Д), нарушение развития которых ее вызвало. Нарушение развития одного типа клеток может приводить к разным заболеваниям!

Патология: Типы клеток: 1) Расщелина верхней губы (заячья губа); А) нейроэктодерма; 2) Расщепление твердого неба (волчья пасть); Б) покровная эктодерма; 3) Расщепление позвоночника (spina bifida); В) нервный гребень; 4) Сиреномелия (аномалия развития в виде сращения нижних конечностей); Д) мезодерма. 5) Диабет I типа

Патология	1	2	3	4	5
Типы клеток					